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Conductivity of random sphere packings: Effects of a size distribution
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Experimental results for the formation factor of packings of spheres with two well defined sizes, in a
conducting fluid, are compared with an equation of Berryman [Phys. Rev. B 27, 7789 (1983)]. When
Berryman’s formula is used twice, in a repeated-mixing fashion, we obtain good agreement with the ex-
perimental data. The procedure can be generalized to wide grain size distributions and then constitutes

a justification for Archie’s law.

PACS number(s): 47.55.Mh, 77.90.+k, 91.60.Pn

I. INTRODUCTION

The electrical properties of porous solids, impregnated
with a liquid, are of interest in many fields of research.
For brine-impregnated sedimentary rocks, Archie [1]
found the following empirical relation:

Oapp=0 ra@™ . (1)

Here, o0, is the apparent conductivity of the medium,
o ; the conductivity of the pore fluid, ¢ the porosity, and
a and m constants. This expression has accordingly been
named “Archie’s law.” It was originally assumed that
the prefactor a equals one, but it was later found that this
is not always the case. The ratio o,/0,,, is called the
formation factor F (assuming negligible effects from sur-
face conduction).

In several cases, model systems of so-called artificial
rocks have been studied. Nettelblad et al. [2] found for
artificial “rocks” made of sand grains glued with small
amounts of epoxy that m =1 and that a is dependent on
the grain size distribution; the wider the distribution, the
higher the value of a. Wong, Koplik, and Tomanic [3],
and Holwech and Ngst [4] found for sintered monosize
glass spheres that m =2.3 and a =0.3. Their values of m
are similar to those of Nettelblad [S5], who measured on
sintered, multisize, nonspherical polypropylene grains.
However, he obtained a higher value of a, which ap-
peared to increase with widening grain size distribution.

Calculations of electrical conductivity for spherical in-
clusions in regular arrays have been performed [6-8].
For the case of a porous material consisting of random
arrays of equal spheres, Berryman [9] used the concept of
tortuosity to obtain the approximate formula

ell+e) . 2)

Tapp™ 057 5

This formula gives results that are close to the results
from calculations for spheres in cubic arrays [7,8].
Effective-medium theories are often used to characterize
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disordered materials. As an example, the theory of
Maxwell Garnett [10] yields for spherical insulator in-
clusions in a host medium

29

aapp=af3_¢ . (3)

Note that for ¢=1, this expression gives asymptotically
the same result as Eq. (2). For low ¢ values, such as for a
close-packed fcc lattice, Eq. (2) is a better approximation
to the exact value [8]. Another important model is the
Bruggeman asymmetric theory. In this theory, one starts
with the pure host material, and adds an infinitesimal
amount of guest material in several stages. For each ad-
dition, one uses the Maxwell Garnett formula to calculate
O apps however, with o, determined by a similar calcula-
tion at the previous stage. Integration then yields for
spherical insulating inclusions in a conducting medium

O'app=0'f‘pL5 . 4)

Other exponents are obtained if, e.g., spheroids are used
[11,12]. Note that Jackson, Smith, and Stanford [13],
when measuring unconsolidated sands of different grain
shapes, found that the exponent in Archie’s law increased
as the grains became less spherical. Lemaitre et al. [14]
performed measurements on packs of spheres of two
different sizes. The porosity was varied by using different
proportions of ‘“small” and “large” spheres. Two
different sphere diameter ratios were used; the large
spheres having 11 times larger diameter than the small
ones and a second set with the diameter ratio 4. The re-
sults on the conductivity did not show good agreement
with the Berryman formula [Eq. (2)], except for the
highest porosities (i.e., for single-size sphere packings).
In this paper, we show how a repeated-mixing procedure,
using the Berryman formula, can give much better agree-
ment with experimental results. We then extend the ar-
gument to wide distributions of grain sizes in order to
give an argument for Archie’s law.
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II. PROPOSED THEORY AND COMPARISON
WITH EXPERIMENT

Lemaftre et al. [14] used different volume fractions of
small spheres x (volume of small spheres divided by total
volume of spheres). For each of the volume fractions
used, they obtained different porosities ¢,,, and different
formation factors F. In order to model this situation, we
used a repeated-mixing argument with two stages. We
first consider the conductivity of a medium consisting of
the small spheres and the pore liquid. The porosity of
this “medium” @4 is

_ Prot )
Pmed Prot TX(1—@yoy)

The conductivity of this medium o4 is obtained from
Eq. (2). We now assume that the medium is approximate-
ly homogeneous on the length scale of the large spheres,
which are considered to be inclusions in this medium. At
this second stage we can apply Eq. (2) a second time.
Now, we take o4 to be the “host” conductivity and the
porosity is replaced with the volume fraction of the
small-sphere—pore-liquid medium, namely,

(peﬁ':¢tot+x ( 1 _¢)tot) . (6)
Finally, we obtain for the conductivity:

_9r Prot[ 2010 TX (1 =@ ) [ 1+ @i +x (1 =@y, ]
PP 4 Prot TX(1—@yo)

o

@)

It should be noted that ¢, and x are not independent
variables in the case we consider, but related because of
the procedure for sample preparation. Thus, Eq. (7) can
be interpreted as giving a unique relation between o,
and x. Yet, the variable ¢, as a function of x displays a
minimum [14], and a given ¢, thus corresponds to two
different values of x. One could thus surmise that a o,
versus @, curve would show two different branches.
Still, the experimental data [14] do not display any clear
division into two branches, and, as is shown in our Fig. 1,
nor do the data computed from Eq. (7).

In Fig. 1, we show the formation factor data of
Lemaftre et al. for the sphere diameter ratio 11 as a
function of porosity. We include the predictions of the
Berryman formula as well as the predictions using the
“repeated Berryman formula.” The agreement between
the predictions using ‘“‘repeated Berryman” and experi-
ments is good, considering the crudity of the model. The
agreement is especially good at high and low porosities,
and less good in the intermediate range. The good agree-
ment at high porosities is not surprising, since in this case
only one sphere size is present and also the Berryman Eq.
(2) yields good agreement. Also our equation describes
the behavior at low porosities much better than the sim-
ple Berryman relation. Still, the ratio 11 between the two
sphere sizes may be insufficient to render the “medium”
consisting of small spheres and pore fluid homogeneous
on the length scale of the large spheres. Especially at the
interstices between several touching large spheres, the
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FIG. 1. The formation factor as a function of porosity for ex-
perimental data (circles), the Berryman formula, Eq. (2) (dotted
line), and the repeated Berryman formula suggested in the arti-
cle (solid line).

packing of small spheres is severally influenced by the
configuration of the large spheres. This possible devia-
tion from homogeneity may explain the discrepancies be-
tween theory and experiment seen in Fig. 1.

III. IMPLICATIONS FOR ARCHIE’S LAW

We now generalize the above repeated-mixing pro-
cedure in order to explain Archie’s law. Let us start with
the assumption that a particular sedimentary rock has a
very wide range of grain sizes, and that the grain shape
does not depend on the grain size. We then assume that
the formation factor depends on the porosity solely ac-
cording to some function:

F=f(g) . (8)

Consider starting with a finite, but very wide grain size
distribution, with porosity @;,.i., and then mixing this
material with another grain size distribution, also wide,
but with all grains much smaller than the grains in the in-
itial distribution. Inside the original pore space, we now
have a porous material with porosity ¢,,.4. The resulting
porous material then has the porosity @jpiiia®med» and it
should thus have the formation factor f(@jnitial Pmed) (@s
we assumed that the formation factor only depended on
the porosity). On the other hand, the medium consisting
of smaller grains and pore liquid has the formation factor
Sf(@rea), and, as the original formation factor was
S (@initia1)» the repeated-mixing argument yields the fol-
lowing relation for the function f:

f ( Pinitial )f ( Pmed ) :f ( PinitialPmed ). &)

It is easily seen that, except for the physically uninterest-
ing solution f(@)=0, the only possible solution to this
equation is

f(@)=p™ ™. (10)

For physical reasons, we can discard the solutions m <0
[the notation —m is used to conform with Eq. (1)]. It
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should be noted that Bruggeman’s asymmetric theory can
be derived from a repeated-mixing argument [15].
Hence, Eq. (4) is a special case of Eq. (10). The main
difference between the methods of derivation is that the
derivation of the Bruggeman theory assumes that the
effect of the addition of a small amount of solid material
can be described by effective-medium theory, also for
high volume fractions of the solid. We are less restrictive
about the possible choices for f(¢). Still, our argument
thus yields the Archie equation as the only possible solu-
tion, for a wide enough grain size distribution, if the for-
mation factor solely depends on the porosity. It is possi-
ble, though, that the wide size distribution is a sufficient,
rather than necessary, condition for Archie’s law. This
assertion is supported by the fact that the special case,
Eq. (4), can also be derived from a randon unit cell argu-
ment, as shown elsewhere [16].

We also note that our argument for Archie’s law
demands that the prefactor a be one. However, the ex-
ponent m is not determined from this argument, and it is
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probably dependent on the grain shape (as discussed in
Sec. I). Atkins and Smith [17] showed that a mixture of
two grain sizes (having a large difference in size), where
samples of each grain obey Archie’s law [Eq. (1)] with a
equal to unity but having different values of the exponent
m, still could obey Archie’s law, but with a prefactor
different from unity. A value of the prefactor different
from one may thus be an indication that the grain shape
is dependent on the grain size.

IV. CONCLUSIONS

We have shown that the Berryman expression for the
electrical formation factor, o,,,=0 p(1+¢)/2, gives
good agreement with experimental results for binary mix-
tures of spheres, if it is used in a repeated-mixing pro-
cedure. If such a procedure is generalized to very wide
grain size distributions, under the assumption that the
formation factor is only dependent on the porosity,
Archie’s law (with prefactor one) is the inevitable result.
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